Up-regulation of acid sphingomyelinase during retinoic acid-induced myeloid differentiation of NB4, a human acute promyelocytic leukemia cell line.
نویسندگان
چکیده
All-trans-retinoic acid (ATRA) induces myeloid differentiation of a human promyelocytic leukemia cell line, NB4, but does not affect its subclone NB4/RA harboring a point-mutated ligand-binding domain (AF2) in retinoic acid receptor alpha (RARalpha) gene. We found that ATRA induced the 4-fold elevation of acid sphingomyelinase (ASMase) activity 24 h after treatment in NB4 cells, but not in NB4/RA cells. ATRA did not affect neutral sphingomyelinase activity in either NB4 or NB4/RA. Upon treatment with ATRA, ceramide, the product of an ASMase reaction, accumulated in NB4 cells. Northern blot analysis showed a marked elevation of the ASMase mRNA 8 h after ATRA treatment, reaching a plateau at 24 h. Regulation of ASMase gene expression was studied by a promoter analysis using luciferase reporter assay. The 5'-upstream flanking region of human ASMase gene (-519/+300) conjugated with the luciferase gene was introduced into COS-7 cells. Luciferase activity in transformed cells markedly increased in response to ATRA stimulation when the wild type RARalpha or the PML/RARalpha hybrid protein was co-expressed. Deletion experiments revealed that a short sequence at the 5'-end (-519/-485) was indispensable for the ATRA response. Within this short region, two retinoic acid-responsive element-like motifs (TGCCCG and TCTCCT) and one AP2-like motif (CCCTTCCC) were identified. Deletion and base-substitution experiments showed that all three motifs are required for the full expression induced by ATRA. Electrophoresis mobility shift assays with the nuclear extract of ATRA-treated NB4 cells showed that proteins were bound specifically to the probe being mediated by all three motifs in the promoter sequence.
منابع مشابه
Benzodithiophenes induce differentiation and apoptosis in human leukemia cells.
All-trans retinoic acid (ATRA) induces clinical remission in patients with t(15;17) acute promyelocytic leukemia (APL) carrying leukemogenic promyelocytic leukemia-retinoic acid receptor alpha (PML-RARalpha) fusion protein by overcoming PML-RARalpha transcriptional repression and inducing myeloid differentiation. To identify more potent chemical differentiation inducers, a screening assay was d...
متن کاملAnalysis of Promyelocytic Leukemia in Human Embryonic Carcinoma Stem Cells During Retinoic Acid-Induced Neural Differentiation
Background: Promyelocytic leukemia protein (PML) is a tumor suppressor protein that is involved in myeloid cell differentiation in response to retinoic acid (RA). In addition, RA acts as a natural morphogen in neural development. Objectives: This study aimed to examine PML gene expression in different stages of in vitro neural differentiation of NT2 cells, and to investigate the possible role o...
متن کاملRegulation of myeloblastin messenger RNA expression in myeloid leukemia cells treated with all-trans retinoic acid.
Retinoic acid is known to induce differentiation of human myeloid leukemia cells in vitro. Recently, all-trans retinoic acid has been used to induce remissions in patients with acute promyelocytic leukemia, probably through differentiation of the leukemia cells. Myeloblastin (mbn) is a protease that has been identified in the human leukemia cell line HL-60. Downregulation of this protease can i...
متن کاملA novel interferon-inducible gene expressed during myeloid differentiation.
The acute promyelocytic leukemia cell line, NB4, can be induced to differentiate to mature granulocytes by retinoic acid treatment. A novel retinoic acid-inducible cDNA clone, designated RI58, was isolated from a cDNA library constructed from retinoic acid-treated NB4 cells by differential hybridization. RI58 cDNA encodes a protein of 58kDa which has a similarity in its amino acids sequence to ...
متن کاملPHAGOCYTES, GRANULOCYTES, AND MYELOPOIESIS Tissue transglutaminase contributes to the all-trans-retinoic acid–induced differentiation syndrome phenotype in the NB4 model of acute promyelocytic leukemia
Treatment of acute promyelocytic leukemia (APL) with all-trans-retinoic acid (ATRA) results in terminal differentiation of leukemic cells toward neutrophil granulocytes. Administration of ATRA leads to massive changes in gene expression, including down-regulation of cell proliferation–related genes and induction of genes involved in immune function. One of the most induced genes in APL NB4 cell...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 277 12 شماره
صفحات -
تاریخ انتشار 2002